
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Pipeline for Complex Software-Intensive Systems:

Addressing Cybersecurity Challenges

Carol WOODY

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

Tim CHICK

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

Aaron REFFETT

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

Scott PAVETTI

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

Richard LAUGHLIN

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

Brent FRYE

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

Mike BANDOR

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-2612, USA

ABSTRACT

A major challenge for cybersecurity comes from new technology

approaches that focus primarily on the benefits of

implementation rather than on defining the governance and risk

management changes necessary to establish and enforce

appropriate protections. This challenge is especially important

for the adoption of technology that impacts critical infrastructure

and shared services, such as voting and defense. Researchers

examined the challenges and the effective cybersecurity options

facing Department of Defense (DoD) programs delivering cyber-

physical systems and adopting DevSecOps. These researchers

found a lack of broad understanding about the level of

management and governance responsibility needed to define and

use the DevSecOps pipeline. Adopting DevSecOps is a socio-

technical decision that links technology with operational process

and practice. Researchers identified several areas that require

cross-functional and organizational management attention to fit

the pipeline for mission use and considerations to address for

producing the system. This paper describes the case study and

lessons learned to date.

When a program adopts DevSecOps, it creates and supports two

major systems concurrently: (1) the product the program was

assigned to produce, and (2) the pipeline the program uses to

develop and operationalize the product. Both systems need

effective built-in security. In addition, neither the product nor the

pipeline can remain static, so the cybersecurity of each must

change to ensure sufficiency. The product expands with added

functionality, which includes added vulnerabilities that tools and

developers must address. The pipeline should be continually

refined and improved as new tools and techniques better enable

the consistent throughput of new features and capabilities. The

focus on functionality and throughput is not sufficient for either

system because the threat landscape changes constantly with new

attacker capabilities. As a result, the need for improved tools to

avoid and remove vulnerabilities from the product become

critical. These tools must also be patched since they are software

and contain vulnerabilities. As more data about the product is

collected through the pipeline, it is critical to tap this information

to improve the product and pipeline. However, the pipeline is not

a single entity. It is a collection of highly configurable pieces

built independently and assembled to perform together.

The increased use of the DevSecOps pipeline to automate

software assurance, cybersecurity, and safety compliance

transfers the responsibilities for identifying and addressing

pipeline and product risks to roles that were not involved in the

past. For example, acquirers and maintainers of pipeline tools

may now be responsible for the level of verification performed

on the product and its associated effectiveness. If the criteria for

tool selection remains focused only on cost, availability, and

compliance, the expectations for this new responsibility could

fall short of stakeholder expectations, especially if structuring the

pipeline does not include stakeholder requirements. There is a

lack of broad understanding about the level of management and

governance responsibility needed to define and assure the

responsible use of a DevSecOps pipeline. Our work is focused

on bringing these under-addressed areas to light.

Keywords: DevSecOps, cybersecurity, risk management,

software-intensive systems, tooling, pipeline.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1. WHY IS ADOPTION OF DEVSECOPS SO COMPLEX?

By definition, a system is “a regularly interacting or

interdependent group of items forming a unified whole” [1].

Thus, DevSecOps is a system. DevSecOps also has the

characteristics of a socio-technical system [2]. Because

DevSecOps is composed of people, processes, and computer

technology that are “designed to collect, process, store, and

distribute information” [3], it is a computer information system.

So, it is no different from any other IT system that supports a

complex business or a critical mission. If we add to this definition

that a DevSecOps pipeline is composed of independently

developed, independently maintained, likely physically and

logically distributed, task-dedicated, interoperable components,

then we can affirm that a DevSecOps pipeline is a complex

sociotechnical computer information system. When a program

adopts DevSecOps, it creates and supports two major systems

concurrently: (1) the product the program was assigned to

produce and (2) the pipeline the program uses to develop and

operationalize the product. Both of these systems need effective

built-in security. Figure 1 depicts the software factory pipeline

that is used for product development integrated with the pipeline

tools and infrastructure; both pipelines must have integrated

security to ensure good cybersecurity.

Figure 1: Pipelines with Integrated Security

In addition, neither the product nor the pipeline can remain static,

so the cybersecurity of each must evolve to ensure sufficiency.

The product expands its functionality, which includes adding

vulnerabilities that tools and developers must address. The

pipeline should continue to be refined and improved as new tools

and techniques better enable consistent throughput of new

features and capabilities. The focus on functionality and

throughput is not sufficient for either system because the threat

landscape is changing constantly with new attacker capabilities.

As a result, the need for improved tools to avoid and remove

vulnerabilities from the product becomes critical. These tools

must also be patched since they are software and contain

vulnerabilities. As more data about the product is collected

through the pipeline, it is critical to tap this information to

improve the product and pipeline. However, the pipeline is not a

single entity. It is a collection of highly configurable pieces that

were built independently and then assembled to perform

together.

Traditionally many of these pipeline and development activities

are performed without integration. This interdependence carries

cybersecurity risk that is not widely recognized. For example, the

1 RMF is described in NIST Special Publication (SP) 800-37:

https://csrc.nist.gov/publications/detail/sp/800-37/rev-2/.

development and operational environments may be air gapped in

traditional development approaches, which allows the strict

separation of roles and responsibilities. However, in a fully

integrated pipeline, the same orchestration tool that builds the

system for testing purposes could also be used for operational

deployments. This approach can increase the risk of an

unauthorized change to the production environment or the

propagation of a vulnerability. A pipeline is not a system to be

built or acquired. It is a personal and organizational mindset that

defines processes for rapidly developing, fielding, and operating

software and software-based systems. A pipeline should use

automation where feasible to achieve the desired throughput of

new features and capabilities. Multiple roles must perform

various steps independently that, with the support of tools and

infrastructure, can be integrated into a completed product.

Pipeline capabilities must also be structured and maintained.

Figure 2 provides a realistic perspective of what is involved and

shows that there are two distinct branches that use the same tools,

processes, and activities.

A pipeline is a means for building products that support an

organization’s mission. Details that define what the technology

addresses are prepared by developing business cases and

requirements. These cases and requirements are further refined

to feed into the pipeline to establish the development cadence, as

shown in Figure 2. Tools and infrastructure capabilities are

selected that allow designers, architects, developers, testers,

verifiers, users, and operators to work together to produce the

products needed to meet the mission using the pipeline

(following the right branch in Figure 2). In addition, a parallel

group of participants implement and support the automation that

allows product creators to build and facilitate management

oversight (following the left branch in Figure 2). Each of these

roles requires specialized technical expertise, and each branch

relies on the same tools and processes structured through the

pipeline. The pipeline must be structured to allow each

participant to access what they need to perform their role, and the

processes must be arranged so that the work flows through the

pipeline and is handed off from one role to the next smoothly

from planning to delivery. This automation is unique to each

instance of the pipeline and reflects mandates such as the Risk

Management Framework (RMF),1 which provides for

monitoring and controls for the governance and management of

technology assets by the organization. Components of the

pipeline are tailored for the specific products to be delivered by

the pipeline. How the pipeline enforces control gates2 between

each step of the flow and how automation is used are uniquely

structured to meet the compliance approval needs and control

requirements that the pipeline will enforce. In our research to

date, we found no standards or guidance for organizations

identifying these unique needs. There is extensive information

about the tools available for pipeline support from vendors and

open source, but there is very little information about how the

pipeline should be effectively managed. We found little to help

organizations define the scope of management and governance

needed to ensure that a pipeline is secure and that it produces

products with the appropriate security built in.

2 Control gates provide human and automated review to

determine when output is ready to move to the next phase [4, p.

22].

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 2: Integrated Pipeline and Infrastructure

Consider the current guidance published by the U.S. DoD:

“DoD organizations should define their own processes, choose

proper activities, and then select tools suitable for their systems

to build software factories and DevSecOps ecosystems.” [4]

“The PM [program manager] shall ensure that software teams use

iterative and incremental software development methodologies

(such as Agile or Lean), and use modern technologies (e.g.,

DevSecOps pipelines) to achieve automated testing, continuous

integration and continuous delivery of user capabilities, frequent

user feedback/engagement (at every iteration if possible),

security and authorization processes, and continuous runtime

monitoring of operational software.” [5]

Programs supporting large, complex, software-intensive systems

struggle since current guidance fails to provide the necessary

details to define and defend a proper balance among features,

defensibility, and stability of the pipeline to achieve a program’s

mission and vision in a cost-effective way. Most guidance paints

a picture of a desired technical outcome, but determining such an

outcome requires a considerable amount of analysis and

interpretation to determine what will work for a specific

situation. This analysis and interpretation can result in increased

contractor costs and schedule delays. Current guidance does not

provide a basis for performing an analysis of alternatives (AoA)

to the DevSecOps pipeline tools and processes.

We started by identifying the needed processes, activities, and

tools, and then we began evaluating whether each of them was

handled with the appropriate security.

2. TOOLS MANAGEMENT IS CRITICAL TO PIPELINE

MANAGEMENT

Managing the pipeline has had little definition, but this is a

critical area for cybersecurity risk. Table 1 lists the eight tool

groups that must be structured to connect roles to capabilities in

a pipeline. Each component connects with at least two other

pipeline components. (See the #Coupling column in Table 1.)

Since the pipeline is a blend of development, security, and

operational capabilities, the tool groups are also a blend,

reflecting interactions that did not exist in earlier structures of the

acquisition and development lifecycle. Each tool type requires

specific technical skills that must be drawn from the blended

environments and work together in a different process flow.

The administrative resources that structure these mappings

control what each participant can see and do. This control goes

beyond the typical responsibility of authentication and

authorization. The administration structures (1) the actions each

tool group can perform and (2) how the interface works. For

product development and pipeline administration, roles are

defined that guide which tool groups can be used and which

individuals are assigned to those roles. Management controls,

such as separation of duties, are structured and monitored by

these administrative resources.

The pipeline flow should move the following processes security

as part of each: plan, develop, build, test, release, deliver, deploy,

operate, monitor, and feedback. Unfortunately, limited

information is available about how this works. Security

considerations can be in the control gates that monitor and

control the pipeline flow. To build security into the product, each

process step must include actions that incorporate security as

outlined in Table 2. However, neither of these actions address

security for the pipeline’s capabilities. The responsibility for

pipeline security must be integrated into the roles and

responsibilities of those that administer and support these

capabilities, similar to how IT infrastructure is supported. To

perform their roles, pipeline administrators should perform the

similar processes and use similar tools, but they are applied to

different content (i.e., use a pipeline tool instead of product

code).

Table 2: Security for DevSecOps Processes [4]

Process Type Process Security Activities

Dev Plan Threat Model

Code Secure Coding

Build SAST, Security as Code

Test DAST, Pen Test

Release Digital Sign

Ops Deliver Secure Transfer

Deploy Security Configuration and

Scan

Operate Security Patch and Audit

Monitor Security Monitor

Feedback Security Analysis

We determined that there is a range of processes that can be

allocated to various roles. (See Table 3.) Each process focuses on

a different component of the pipeline, but all processes are

needed to keep the pipeline functioning effectively.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 1: DevOps Tooling

Tool Group #Coupling Interface

Issue Tracking System 7 create, modify, delete, read issues where an issue has some schema definition

Code Review System 2 create review, start review, add source files to review, add comments to review, create issue

from review item, resolve issue from review item, close review

Monitoring System 7 write message; write metric; display metric; create, modify, delete, read alarm threshold on

metric; notify on alarm; show dashboard; process message; extract metric

Integration and Test

Environment

3 deploy system, tear down system, execute tests, collect test results

Documentation System 3 create, modify, delete document where a document has some schema definition

Build System 6 execute build; create, modify, delete, read build definition where a build is a collection of

steps executed to create artifacts that can be executed

Source Control System 6 create, modify, delete, read repository; write source files to repository; modify source lines in

repository; read repository

Communication System 4 create, modify, delete, read channel; read and write comment to channel where a channel is an

interactive conversation of text between human users with machine users making

contributions

Table 3: Operational Process

Operational Process Component Role

Add Hardware Host System infra

Code Software Source Control System

Issue Tracking System

IdAM

Communication System

Code Review System

dev

Configure Infrastructure Host System infra

Decommission Hardware Host System infra

Deploy Application Any ops

Disaster Recovery Any all

Install Software Any admin

Manage Incidents Monitoring System admin

Manage Users IdAM System admin

Monitor Infrastructure Monitoring System infra

Operate Solutions Any ops

Patch Infrastructure Host System infra

Patch Software Any admin

Perform Backup Any admin

Review Logs Monitoring System ops

Test Applications Any dev

Increasingly, infrastructure services and development tool types

are the target of attacks. Many of these capabilities are supported

by third-party software, including open source software, which

come to the organization through the supply chain. Successful

software security analysis builds on knowledge about how

systems were compromised and which mitigations were

successfully deployed. Such attacks on development tools are

examples of what can go wrong. Common Attack Pattern

Enumeration and Classification (CAPEC)3 provides a

comprehensive dictionary of known attack patterns used by

adversaries to exploit known weaknesses in cyber-enabled

3 https://capec.mitre.org/

capabilities. CAPEC lists attack patterns by Mechanisms of

Attack or Domains of Attack. SQL-Injection attacks appear in

the Inject Unexpected Items mechanisms category. The Common

Weakness Enumeration (CWE)4 entry for SQL-Injection

includes recommended mitigations.

One of the operational activities needed to address vulnerabilities

is “patch software.” (See Table 3, entry is marked in green.) To

perform this activity for the pipeline, first ensure that only

authorized resources can perform the process, and then identify

the controls needed to monitor performance of the process.

4 https://cwe.mitre.org/

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Structure the actions that take place and who performs them. The

remainder of this section is our initial attempt to assemble this

information.

Patching software is viewed from the perspective of software

being patched outside the software that the organization

produces. Patching application software that is a product of the

organization is presumed to follow the procedures and practices

of the development team, and it is pushed through the normal

DevSecOps cycle and put into production. The process described

in this paper follows the patching of software development tools

from a vendor that does not deliver updates via an automatic

system and the patch itself contains a remediation for some

vulnerability. In the scenario below, we consider the vendor to be

an untrusted source.

1) Determination. The administrator determines from some

mechanism that a development tool requires a security

patch.

2) Triage. The administrator triages, categorizes, and

prioritizes the update before deploying it in the

organization.

3) Acquisition. The administrator acquires the patch from the

vendor.

4) Security. The administrator determines the authenticity of

the patch.

5) Test Deployment. The administrator deploys the patch to a

test system and performs tests.

6) Production Deployment. The administrator deploys the

patch to the production system.

7) Monitoring. Operations personnel monitor the status of the

product system.

1. Determination

Methods: Manual Checking, Subscription Notification

Input: CVE Notification

Output: Vendor, CVE, Systems Affected, Change Management

(NIST 800-171)

Determining if a patch is needed for software in a system can be

done using a few different methods. The most basic approach is

for operations personnel to regularly check a published database

of vulnerabilities. Vulnerability publishing sources include a risk

score and detailed information about the vulnerability that is

useful to keep during triage. There might be other reasons for

updating or patching software, such as to acquire new features or

to satisfy version constraints on other software in the system.

Vendors may also notify their customers of a vulnerability

through other means, such as by sending email or listing it on

their website. Once a vulnerability is identified, the information

gathered is carried over into triaging the issue.

2. Triage

Methods: Risk Assessment, Impact Assessment

Input: Vendor, CVE, Systems Affected, Security Policy, Change

Management (NIST 800-171)

Output: Risk Matrix

Once an update is discovered that affects a system, it is triaged,

categorized, and prioritized for being deployed in the

organization. Through a risk assessment (as suggested in NIST

800-171), the course of action is determined, which can range

from doing nothing to deploying the update immediately. Impact

analysis determines the extent to which the vulnerability affects

the system and how much work might be involved to update it.

The output is a risk matrix that prioritizes the updates needed

during operations work.

3. Acquisition

Methods: Manual Acquisition

Input: Risk Matrix, Vendor, Security Policy, Change

Management (NIST 800-171)

Output: Software Patch

Acquiring the software in this scenario most likely requires the

administrator to download the update via the web, but other

methods are possible. To mitigate the risk of downloading a patch

from an untrusted source, actions to consider include using a

secure connection, isolating the patch after downloading, or

obtaining the patch on a network separate from the target

environment. The actions determined in this step are a

consequence of the organization’s security policies and the risk

assessment performed during triage.

4. Security

Methods: Malware Scan, Authenticity Check

Input: Security Policy, Patch, Scan Tool, Authenticity Check

Tool, Change Management (NIST 800-171)

Output: Go/No-Go

A software patch may need additional scrutiny to check its

authenticity and ensure it doesn't contain malware. Whether the

patch came from a trusted or untrusted source, performing both

of these checks helps prevent unwanted software from being

injected into a system. Once these checks are performed and they

succeed to a satisfactory level (and in this case, it would be all or

nothing), then the outcome would be Go, and the next step (Test

Deployment) can begin. If a check fails, then the action would be

No-Go, and notifying the vendor might be warranted.

5. Test Deployment

Methods: Orchestration, Monitoring, Testing

Input: Patch, Deployment Mechanism, Test Criteria, Change

Management (NIST 800-171)

Output: Go/No-Go, Installation Instructions, Change

Management (NIST 800-171) Approval

This step involves installing the patch to a test system, where

tests can be performed while the system is monitored for faults.

This step requires a test system that duplicates the system being

patched. In a cloud environment, this is more easily attained from

a cloud service consumer perspective since the service side and

the operational slide of the cloud are largely separated. The

feasibility of a patch should be determined through repeatable,

and appropriately rigorous, definition and procedure. Testing

should ensure that the patch (1) installs correctly and without

disruption of other co-located software (i.e., dependency version

conflict) and (2) runs correctly once installed. Patches that fail

tests or that cause compatibility issues elsewhere in the system

should be rolled back from the test system. In these cases, the

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

outcome is No-Go, which implies that there is a rollback

procedure or policy in place to recover the state of the test system

or to destroy it. Once the tests are satisfied, we can move to the

next step (Production Deployment). Update the change

management system to record Approval for compliance with

NIST 800-171.

6. Production Deployment

Methods: Orchestration, Monitoring

Input: Patch, Installation Instructions

Output: Success/Rollback

Weaknesses: inadequate testing causes rollback

Deployment to the production system can be done in many

different ways, ranging from manual distribution of individual

system components to full distribution from an orchestration

system. It may be necessary to catalog the change in a change

management process as required by NIST 800-171. Careful

patching of the system to ensure its compatibility with the

production system is needed, and if everything proceeds without

changing the working state of the production system, then a

successful patch can proceed. If errors are encountered, the

system can be rolled back to recover the last working state of the

system.

7. Monitoring

Methods: Monitoring Tools

Input: System Affected, Monitoring Configuration

Output: Monitoring Alerts

Weaknesses: inadequate monitoring allows bad patch to go

undetected

Part of DevOps and DevSecOps is monitoring the system's

performance, security, and usage metrics. An inventory system

that is configured to monitor software versions of system

components can inform system operators about the rollout of the

patch. However, monitoring in DevOps and DevSecOps isn't just

about monitoring the deployed application for health or usage

data; it is also useful for tracking and quantifying system

attributes, such as the system’s software or firmware versions.

Once deployed, the patched system is monitored for unexpected

behaviors and if any are detected, a Monitoring Alert is issued to

identify the issue and provide details about it. If the vendor is an

untrusted source, determine how to address the following

potential weaknesses:

 The patch source might have been tampered with.

 A scanning and authenticity check might not catch carefully

crafted malware.

 The patch might cause a related activity to fail. (For

example, changes to a tool whose output is merged with

other data could break the merge.)

 The test system doesn't reflect the production system,

causing incorrect test results.

 Inadequate testing might require a rollback. (Since

operational rollbacks are not on the initial operational list

from Table 3, decide who can authorize them and how they

are done.)

 Inadequate configuration monitoring allows a bad patch to

deploy undetected.

3. CONCLUSION

Through our initial exploration of the tools, processes, and

activities needed for consideration of pipeline and product

security, we identified additional analysis needed for each piece

of the pipeline to determine how it should be applied. The

information we assembled to date only touches on one of these

many activities, but it enables us to begin to reason about

potential security weaknesses and undesirable outcomes. Using

this information, we can evaluate the controls in the pipeline to

verify their sufficiency.

10. REFERENCES

[1] Merriam-Webster dictionary definition of “system”

https://www.merriam-webster.com/dictionary/system.

[2] SEBoK Glossary.

https://www.sebokwiki.org/wiki/Sociotechnical_System_(gl

ossary)

[3] Wikipedia entry for Information System.

https://en.wikipedia.org/wiki/Information_system

[4] DoD CIO, DoD Enterprise DevSecOps Reference Design.

V1, August 2020. p. 15.

https://dodcio.defense.gov/Portals/0/Documents/DoD%20E

nterprise%20DevSecOps%20Reference%20Design%20v1.0

_Public%20Release.pdf?ver=2019-09-26-115824-583

[5] Memorandum, Software Acquisition Pathway Interim

Policy and Procedures. January 3, 2020. p. 3.

https://www.acq.osd.mil/ae/assets/docs/USA002825-

19%20Signed%20Memo%20(Software).pdf

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of

Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University

for the operation of the Software Engineering Institute, a federally funded research

and development center.

The view, opinions, and/or findings contained in this material are those of the

author(s) and should not be construed as an official Government position, policy,

or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade

name, trade mark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by Carnegie Mellon

University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND

SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN

"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO

ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF

FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution. Please see Copyright notice for non-US

Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works

from this material for internal use is granted, provided the copyright and “No

Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without

modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

DM20-0682

https://www.merriam-webster.com/dictionary/system
https://www.sebokwiki.org/wiki/Sociotechnical_System_(glossary)
https://www.sebokwiki.org/wiki/Sociotechnical_System_(glossary)
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583

